New roles of the fission yeast eIF2α kinases Hri1 and Gcn2 in response to nutritional stress.

نویسندگان

  • Ruth Martín
  • Juan José Berlanga
  • César de Haro
چکیده

In fission yeast, three distinct eukaryotic initiation factor 2α (eIF2α) kinases (Hri1, Hri2 and Gcn2), regulate protein synthesis in response to various environmental stresses. Thus, Gcn2 is activated early after exposure to hydrogen peroxide (H2O2) and methyl methanesulfonate (MMS), whereas Hri2 is the primary activated eIF2α kinase in response to heat shock. The function of Hri1 is still not completely understood. It is also known that the mitogen-activated protein kinase Sty1 negatively regulates Gcn2 and Hri2 activities under oxidative stress. In this study, we demonstrate that Hri1 is mainly activated, and its expression upregulated, during transition from exponential growth to the stationary phase in response to nutritional limitation. Accordingly, both Hri1 and Gcn2, but not Hri2, are activated upon nitrogen source deprivation. In contrast, Hri2 is stimulated early during glucose starvation. We also found that Gcn2 is implicated in nitrogen starvation-induced growth arrest in the cell cycle G1 phase as well as in the non-selective protein degradation process caused upon this particular cellular stress. Moreover, Gcn2, but not Hri1 or Hri2, is essential for survival of cells growing in minimal medium, upon oxidative stress or glucose limitation. We further show that eIF2α phosphorylation at serine 52 by the eIF2α kinases is necessary for efficient cell cycle arrest in the G1 phase, for the consequent protein degradation and for sexual differentiation, under nitrogen starvation. Therefore, the eIF2α kinase signalling pathway modulates G1 phase cell cycle arrest, cell survival and mating under nutritional stress in the fission yeast Schizosaccharomyces pombe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fission yeast TORC1 prevents eIF2α phosphorylation in response to nitrogen and amino acids via Gcn2 kinase.

Serine 51 phosphorylation of the eukaryotic initiation factor-2α (eIF2α) is an important mechanism involved in blocking general protein synthesis in response to diverse types of stress. In fission yeast, three kinases (Hri1, Hri2 and Gcn2) can phosphorylate eIF2α at serine 51. In this study, we show that Tor2, as part of the TORC1 complex, prevents the phosphorylation of eIF2α in cells growing ...

متن کامل

Fission yeast TORC1 prevents eIF2a phosphorylation in response to nitrogen and amino acids via Gcn2 kinase

Serine 51 phosphorylation of the eukaryotic initiation factor-2a (eIF2a) is an important mechanism involved in blocking general protein synthesis in response to diverse types of stress. In fission yeast, three kinases (Hri1, Hri2 and Gcn2) can phosphorylate eIF2a at serine 51. In this study, we show that Tor2, as part of the TORC1 complex, prevents the phosphorylation of eIF2a in cells growing ...

متن کامل

Role of mitogen-activated protein kinase Sty1 in regulation of eukaryotic initiation factor 2alpha kinases in response to environmental stress in Schizosaccharomyces pombe.

The mitogen-activated protein kinase (MAPK) Sty1 is essential for the regulation of transcriptional responses that promote cell survival in response to different types of environmental stimuli in Schizosaccharomyces pombe. In fission yeast, three distinct eukaryotic initiation factor 2alpha (eIF2alpha) kinases, two mammalian HRI-related protein kinases (Hri1 and Hri2) and the Gcn2 ortholog, reg...

متن کامل

Stress-induced inhibition of translation independently of eIF2α phosphorylation.

Exposure of fission yeast cells to ultraviolet (UV) light leads to inhibition of translation and phosphorylation of the eukaryotic initiation factor-2α (eIF2α). This phosphorylation is a common response to stress in all eukaryotes. It leads to inhibition of translation at the initiation stage and is thought to be the main reason why stressed cells dramatically reduce protein synthesis. Phosphor...

متن کامل

The Role of Nitric Oxide Synthase in the Regulation of Ultraviolet Light-induced Phosphorylation

Ultraviolet light (UV) induces phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α) and inhibits global protein synthesis. Both eIF2 kinases, PERK and GCN2, have been shown to phosphorylate eIF2α in response to UV-irradiation. However, the roles of PERK and GCN2 in UV-induced eIF2α phosphorylation are controversial. The upstream signaling pathway(s) that leads to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 126 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2013